Directed Search

Lecture 1: Introduction and Basic Formulations

Lectures at Osaka University (2012)

© Shouyong Shi

University of Toronto

Main sources for this lecture:

- Shi, S., 2008, "Search Theory (New Perspectives)," in: S.N. Durlauf and L.E. Blume eds., The New Palgrave Dictionary of Economics, 2nd edition, Palgrave, Macmillan.
- Burdett, K., S. Shi and R. Wright, 2001, "Pricing and Matching with Frictions," JPE 109, 1060-1085.
- Julien, B., J. Kennes and I. King, 2000, "Bidding for Labor," RED 3, 619-649.

1. Search Frictions and Search Theory

- Search frictions are prevalent:
 - unemployment, unsold goods, under-utilization
 - pervasive failure of the law of one price
- "Undirected search": individuals know the terms of trade only AFTER the match
 - bargaining: Diamond (82), Mortensen (82), Pissarides (90)
 - price posting: Burdett and Mortensen (98)

"Directed search":

- individuals choose what terms of trade to search for
- tradeoff between terms of trade and trading probability

Why should we care?

- prices should be important ex ante in resource allocation
- efficiency properties and policy recommendations
- robust inequality and unemployment
- tractability for analysis of dynamics and business cycles

Is directed search empirically relevant?

- Hall and Krueger (08): 84% of white, non-college educated male workers either "knew exactly" or "had a pretty good idea" about how much their current job would pay at the time of the first interview.
- Holzer, Katz, and Krueger (91, QJE): (1982 Employment Opportunity Pilot Project Survey) firms in high-wage industries attract more applicants per vacancy than firms in low-wage industries after controlling for various effects.

Sketch of the lectures (if time permits):

- basic formulations of directed search
- matching patterns and inequality
- wage ladder and contracts
- business cycles
- monetary economics

2. Undirected Search and Inefficiency

One-period environment:

- \bullet workers: an exogenous, large number u
 - risk neutral, homogeneous
 - producing y when employed, 0 when unemployed
- \bullet firms/vacancies: endogenous number v
 - cost of a vacancy: $k \in (0, y)$
 - production cost = 0

Matching technology:

- matching function: M(u, v) (constant returns to scale)
- tightness: $\theta = v/u$; matching probabilities:

for a worker:
$$p(\theta) = \frac{M(u,v)}{u} = M(1,\theta)$$

for a vacancy: $q(\theta) = \frac{M(u,v)}{v} = M(\frac{1}{\theta},1) = \frac{p(\theta)}{\theta}$

• assumptions:

 $p(\theta)$ is strictly increasing and concave;

 $q(\theta)$ is strictly decreasing; $q(0) = 1, q(\infty) = 0;$

worker's share of contribution to match:

$$s(\theta) \equiv \frac{u}{M} \frac{\partial M(u, v)}{\partial u} = 1 - \frac{\theta p'(\theta)}{p(\theta)} \in [0, 1]$$

Wage determination (Nash bargaining):

 $\max_{w \in [0,y]} w^{\sigma} (y-w)^{1-\sigma}, \quad \sigma \text{: worker's bargaining power}$

solution: $w = \sigma y$

Equilibrium tightness:

• expected value of a vacancy:

$$J = q(\theta)(y - w) = (1 - \sigma)q(\theta)y$$

• free entry of vacancies: J = k

$$\implies w = y - \frac{k}{q(\theta)} \Longrightarrow q(\theta) = \frac{k}{(1 - \sigma)y}$$

a unique solution for θ exists iff $0 < k < (1 - \sigma)y$.

Social welfare and inefficiency:

- welfare function: $W = u \times V + v \times (J k) = u V$
- value for a worker:

$$V = p(\theta)w = p(\theta)\left[y - \frac{k}{q(\theta)}\right] = p(\theta)y - k\theta$$

• social welfare equals net output:

$$W = u V = u p(\theta)y - (u\theta)k$$

• "constrained" efficient allocation:

$$\max_{\theta} \mathcal{W} = u [p(\theta)y - k\theta] \implies p'(\theta) = \frac{k}{y}$$

• rewrite the first-order condition for efficiency:

$$\frac{k}{y} = p'(\theta) = [1 - s(\theta)] \frac{p(\theta)}{\theta} = [1 - s(\theta)]q(\theta)$$

• compare with eqm condition, $\frac{k}{y} = (1 - \sigma)q(\theta)$: equilibrium is socially efficient if and only if

$$s(\theta) = \sigma$$
worker's share bargaining in creating match power
Hosios (90) condition

Why is this condition needed for efficiency?

- two externalities of adding one vacancy:
 - decreasing other vacancies' matching
 - increasing workers' matching
- internalizing the externalities:

private marginal value of vacancy = social marginal value of vacancy
$$(y - w)q = (1 - \sigma)qy$$
 = social marginal value of vacancy
$$\frac{\partial M(u,v)}{\partial v}y = (1 - s)qy$$

- $-if 1 \sigma > 1 s$, entry of vacancies is excessive
- $-if 1 \sigma < 1 s$, entry of vacancies is deficient

Efficiency condition, $s(\theta) = \sigma$, is violated generically

• Cobb-Douglas: $M(u,v) = M_0 u^{\alpha} v^{1-\alpha}$

$$p(\theta) = M_0 \theta^{1-\alpha}, \quad s(\theta) = 1 - \frac{\theta p'(\theta)}{p(\theta)} = \alpha \quad \text{(a constant)}$$

• telephone matching: $M(u, v) = \frac{uv}{u+v}$

$$p(\theta) = \frac{\theta}{1+\theta}, \quad s(\theta) = \frac{\theta}{1+\theta}$$

$$s(\theta) = \sigma \Longrightarrow \sigma = 1 - \left(\frac{k}{y}\right)^{1/2} \quad (\text{recall } p'(\theta) = \frac{k}{y})$$

• urn-ball matching: $M(u, v) = v(1 - e^{-u/v})$

Cause of inefficiency:

search is undirected: wage does not perform the role of allocating resources ex ante (before match)

- Nash bargaining splits the ex post match surplus
- it does not take matching prob into account

What about undirected search with wage posting? (e.g., Burdett-Mortensen 98)

• similar inefficiency:
workers cannot search for particular wages;
workers receive all offers with the same probability

Criticisms on undirected search models:

- inefficiency arises from exogenously specified elements: Nash bargaining, matching function
- policy recommendations are arbitrary, depending on which way the efficiency condition is violated. E.g.
 - Should workers' search be subsidized?
- can we just impose the Hosios condition and go on?
 - fine for some analyses, but not useful if σ and the parameters in $s(\theta)$ change with policy

3. Directed Search and Efficiency

Directed search:

- Basic idea: individuals explicitly take into account the relationship between wage and the matching probability
- A more detailed description:
 - a continuum of "submarkets", indexed by w
 - market tightness function: $\theta(w)$
 - matching inside each submarket is random
 - matching probability: for a worker $p(\theta(w))$; for a vacancy: $q(\theta(w))$

Market tightness function: $\theta(w)$

- free entry of vacancies into each submarket
- \bullet complementary slackness condition for all w:

$$J(w) = q(\theta(w))(y - w) \le k,$$
 "=" if $\theta(w) > 0$

- if there is potential surplus (y w > k), then J(w) = k: firms are indifferent between such submarkets
- if there is no potential surplus $(y w \le k)$, then $\theta(w) = 0$
- solution:

$$\theta(w) = q^{-1} \left(\frac{k}{y-w}\right)$$
 whenever $w < y - k$; $\theta(w)$ is strictly decreasing in w

Worker's optimal search:

(This decision would not exist if search were undirected.)

• A worker chooses which submarket w to enter:

$$\max_{w} p(\theta(w)) w \text{ where } \theta(w) = q^{-1} \left(\frac{k}{y - w} \right)$$

- tradeoff between wage w and matching prob $p(\theta(w))$: higher wage is more difficult to be obtained: $\frac{dp(\theta(w))}{dw} < 0$
- optimal choice:

$$w = -\frac{\tilde{p}(w)}{\tilde{p}'(w)}, \quad \tilde{p}(w) \equiv p(\theta(w))$$

Efficiency of directed search equilibrium:

Optimal directed search implies the Hosios condition:

$$\frac{w}{y} = s(\theta), \text{ where } s(\theta) = 1 - \frac{\theta p'(\theta)}{p(\theta)}$$

Proof:

$$\theta(w) = q^{-1} \left(\frac{k}{y - w} \right) \Longrightarrow \theta'(w) = \frac{q(\theta(w))/(y - w)}{q'(\theta(w))}$$

$$q(\theta) = \frac{p(\theta)}{\theta} \Longrightarrow \theta'(w) = \frac{\theta p(\theta)/(y - w)}{\theta p'(\theta) - p(\theta)}$$

$$\Longrightarrow w = -\frac{p(\theta)}{p'(\theta)\theta'(w)} = (\frac{p}{\theta p'} - 1)(y - w)$$

$$= (\frac{1}{1 - s(\theta)} - 1)(y - w)$$

$$\Longrightarrow \frac{w}{y} = s(\theta). \quad \blacksquare$$

Hedonic pricing

4. Strategic Formulation of Directed Search

Motivation:

- The formulation above endogenizes the wage share; but the matching function is still a black box
- Is there a way to endogenize the mf as well?
- In a strategic formulation, total # of matches is an aggregate result of workers' application decisions
- some papers:
 Peters (91, ECMA),
 Burdett-Shi-Wright (01, JPE), Julien-Kennes-King (00, RED)

One-period game with directed search: BSW 01 (for fixed numbers u and v, for now)

- firms simultaneously post wages
- workers observe all posted wages
- each worker chooses which firm to apply to: no multiple applications
- each firm randomly chooses one among the received applicants to form a match

No coordination among firms or workers

a worker and a vacancy may fail to match

Focus on symmetric equilibrium:

- all workers use the same strategy, including responses to a firm's deviation
- \bullet this implies that all firms post the same wage w

Why such a focus?

- tractability: in the case u = v = 2, there are many asymmetric equilibria which involve trigger strategies
- symmetric equilibrium emphasizes lack of coordination

A worker's strategy:

(when firm A posts x and other firms post w)

- each worker applies to firm A with probability a, and applies to each of the other firms with prob $\pi(a) = \frac{1-a}{v-1}$
- an applicant's indifference condition:

$$p(a) x = p(\pi(a)) w$$
prob. of being prob. of being chosen by firm A chosen elsewhere

• this solves a = f(x, w): workers' best response to firm A's deviation to x A worker B's matching probability with firm A:

# of other	prob. of	conditional prob.
app. to A	this event	that B is chosen
n	$C_{u-1}^n a^n (1-a)^{u-1-n}$	$\frac{1}{n+1}$

unconditional prob. that B matches with firm A:

$$\sum_{n=0}^{u-1} \frac{1}{n+1} C_{u-1}^n a^n (1-a)^{u-1-n} = \sum_{n=0}^{u-1} \frac{(u-1)! \ a^n (1-a)^{u-1-n}}{(n+1)! (u-1-n)!}$$

$$= \frac{1}{ua} \sum_{n=1}^{u} \frac{u!}{n! (u-n)!} a^n (1-a)^{u-n} = \frac{1-(1-a)^u}{ua} \quad (\equiv p(a))$$

Firm A's optimal choice:

• queue length (expected #) of applicants to firm A:

$$\sum_{n=1}^{u} n C_u^n a^n (1-a)^{u-n} = \sum_{n=1}^{u} \frac{u! \ a^n (1-a)^{u-n}}{(n-1)!(u-n)!}$$

$$= ua \sum_{n=0}^{u-1} \frac{(u-1)!}{n!(u-n)!} a^n (1-a)^{u-1-n} = ua.$$

- tightness for firm A, $\frac{1}{uf(x,w)}$, is indeed a function of x
- firm A's matching probability:

$$\sum_{n=1}^{u} C_u^n a^n (1-a)^{u-n} = 1 - (1-a)^u$$

Firm A's optimal choice:

• choosing wage x = g(w) to solve:

$$\max_{(x,a)} [1 - (1-a)^u] (y-x)$$
s.t.
$$\frac{1 - (1-a)^u}{ua} x = \frac{1 - [1 - \pi(a)]^u}{u\pi(a)} w$$

- \bullet tradeoff with a higher x:
 - -lower ex post profit (y-x)
 - higher matching probability $[1 (1 a)^u]$:
 - *a = f(x, w) satisfies the constraint;
 - * it is an increasing function of x

Symmetric equilibrium:

wage w that satisfies w = g(w).

- worker's application prob.: $a = \pi(a) = \frac{1}{v}$
- queue length for each firm: $ua = \frac{u}{v} = \frac{1}{\theta}$
- firm's matching probability:

$$q(u,v) = 1 - (1-a)^u = 1 - (1 - \frac{1}{v})^u$$

• firm's first-order condition yields:

$$w = y \left[\frac{(1 - 1/v)^{-u} - 1}{u/v} - \frac{1}{v - 1} \right]^{-1}$$

Why does this equilibrium look different?

• endogenous matching function:

$$M(u, v) = v \ q(u, v) = v \left[1 - (1 - \frac{1}{v})^u\right]$$

- decreasing returns to scale:

$$q(2u, 2v) < q(u, v) \Longrightarrow M(2u, 2v) < 2M(u, v)$$

- coordination failure is more severe when there are more participants on each side
- deviating firm can affect a worker's payoff elsewhere:

$$\frac{1 - [1 - \pi(a)]^u}{u\pi(a)}w$$
, where $\pi(a) = \frac{1 - a}{v - 1}$

All works out well in the limit $u, v \to \infty$:

[denote
$$\theta = \lim \frac{v}{u} \in (0, \infty)$$
]

• constant returns to scale in matching:

$$q(u,v) = 1 - (1 - \frac{1}{v})^{u}$$

$$= 1 - (1 - \frac{1}{\theta u})^{u} \to 1 - e^{-1/\theta}$$

$$p(u,v) = \frac{1 - (1 - \frac{1}{v})^{u}}{u/v} \to \theta \left(1 - e^{-1/\theta}\right)$$

• a firm's deviation no longer affects the queue length of applicants elsewhere:

$$u\pi(a) = u\frac{1-a}{v-1} \to \frac{1}{\theta}$$

The limit $u, v \to \infty$: (continued)

• equilibrium wage share satisfies Hosios condition:

$$\frac{w}{y} = \left[\frac{(1-1/v)^{-u}-1}{u/v} - \frac{1}{v-1}\right]^{-1}$$

$$\rightarrow \frac{1}{\theta[e^{1/\theta}-1]} = 1 - \frac{\theta p'(\theta)}{p(\theta)} \equiv s(\theta)$$

recall:
$$p(\theta) = \theta(1 - e^{-1/\theta}), \quad q(\theta) = 1 - e^{-1/\theta}$$

• expected payoff equals the expected social value:

a worker:
$$pw \to y e^{-1/\theta}$$

a firm:
$$q(y - w) \to y \left[1 - (1 + \frac{1}{\theta})e^{-1/\theta} \right]$$

Explain eqm expected payoff as social marginal values:

• A worker's expected payoff

$$pw = y \times e^{-1/\theta}$$
 prob. that a firm fails to match

Adding a worker to match with a firm creates social value only when the firm does not have a match.

• A firm's expected payoff

$$q(y-w) = \underbrace{y \left(1 - e^{-1/\theta}\right)}_{\text{firm's matching}} - \underbrace{y \frac{1}{\theta} e^{-1/\theta}}_{\text{crowding-out}}$$

$$\text{probability} \qquad \text{on other firms}$$

Equilibrium tightness in the limit $u, v \to \infty$:

• free entry of vacancies implies: q(y - w) = k

i.e.
$$\underbrace{1 - (1 + \frac{1}{\theta})e^{-1/\theta}}_{\text{strictly decreasing in }\theta} = \frac{k}{y}$$

• for any $k \in (0, y)$, there is a unique solution $\theta \in (0, \infty)$

A game with first-price auctions: JKK 00 (for fixed numbers u and v)

- firms post auctions with reserve wages above which a firm does not hire a worker
- workers observe all posted reserve wages
- each worker chooses which firm to apply to
- after receiving a number $n \ge 1$ of applicants:
 - $-if n \ge 2$, the applicants bid in first-price auction (i.e., the worker with the lowest wage offer wins)
 - -if n = 1, the worker is paid the reserve wage

Consider firm A that posts reserve wage x (while all other firms post reserve wage r)

- \bullet each worker visits firm A with prob. a = f(x, r)
- payoff to a worker (B) who visits firm A:

# of other	prob. of	worker B 's
visitors, n	the event	payoff
n = 0	$(1-a)^{u-1}$	\overline{x}
$n \ge 1$	$1 - (1 - a)^{u-1}$	0

 \bullet a = f(x, r) solves a worker's indifference condition:

$$(1-a)^{u-1}x = [1-\pi(a)]^{u-1}r$$
, where $\pi(a) = \frac{1-a}{v-1}$

 \bullet payoff to firm A:

# of visitors, n	prob. of the event	payoff
n=1	$ua(1-a)^{u-1}$	y-x
$n \ge 1$	$1 - (1-a)^u - ua(1-a)^{u-1}$	y

• firm A's optimal choice of x:

$$\max_{(x,a)} ua(1-a)^{u-1}(y-x) + \left[1 - (1-a)^u - ua(1-a)^{u-1}\right]y$$
 s.t. $(1-a)^{u-1}x = [1-\pi(a)]^{u-1}r$

• solution (firm A's best response to other firms): x = g(r)

Symmetric equilibrium: r = g(r)

• the limit when $u, v \to \infty$:

-queue length: $ua = u/v \rightarrow 1/\theta$

- reserve wage: $r \rightarrow y$

– equilibrium wage distribution:

wage	prob
y	$(1-a)^{u-1} \to e^{-1/\theta}$
0	$1 - (1-a)^{u-1} \to 1 - e^{-1/\theta}$

• equivalence to wage posting in expected payoff:

a worker:
$$y e^{-1/\theta}$$
; a firm: $y \left[1 - (1 + \frac{1}{\theta})e^{-1/\theta} \right]$

General lessons:

- directed search makes sense: ex ante tradeoff between terms of trade and probability
- directed search can attain constrained efficiency in the canonical search environment
- the mechanism to direct search is not unique: price/wage posting, auctions, contracts
 - commitment to the terms of trade is the key
 - uniform price is not necessary for efficiency when agents are risk-neutral