

Directed Search

Lecture 3: Wage Ladder and Contracts

Lectures at Osaka University (2012)

© Shouyong Shi
University of Toronto

Main sources for this lecture:

- Shi, S., 2009, “Directed Search for Equilibrium Wage-Tenure Contracts,” ECMA 77, 561-584.
- Delacroix, A. and S. Shi, 2006, “Directed Search On the Job and the Wage Ladder,” IER 47, 651-699.
- Tsuyuhara, K., 2010, “Dynamic Contracts with Worker Mobility via Directed On-the-Job Search,” manuscript.
- Menzio, G. and S. Shi, 2011, “Efficient Search on the Job and the Business Cycle,” JPE 119, 468-510.

1. Motivation

Facts:

- job-to-job transition is frequent in a worker's career:
 - 2.6% of employed workers change employers per month (Fallick and Fleischman 04)
 - average # of jobs = 7 in first 10 years (Topel and Ward 92)
- wage is a key determinant of mobility (Farber 99):
 - wage increases with tenure
 - high-wage workers are less likely to quit
- limited mobility and wage ladder (Buchinsky and Hunt 99):
 - most of wage movements are between adjacent quintiles

Some explanations:

- learning about productivity:
Jovanovic (79), Harris and Holmstrom (82),
Moscarini (05), Gonzalez and Shi (00)
- match-specific productivity and heterogeneity:
Postel-Vinay and Robin (02), Burdett and Coles (06)

These explanations are useful, but not enough to explain:

- residual wage inequality
- wage ladder and limited wage mobility

On-the-job search (OJS) may be important for these facts:

- Burdett and Mortensen (98):
 - posting of wage levels + OJS \implies wage dispersion among homogeneous workers
 - key insights:
 - luck in search \implies heterogeneous search outcomes
 - \implies heterogeneous outside options in further search
 - \implies continuous non-degenerate wage distribution
- Burdett and Coles (03, **BC**):
 - extend to wage-tenure contracts + OJS \implies wage rises and quit rate falls with tenure

Search is undirected in BC (03):

- does not capture the wage ladder:
 - all applicants draw offer from the same distribution
 - have the same prob. of moving to the highest wage
- robustness issue:
do wage dispersion and the tenure effect depend on the assumption that applicants do not know offers ex ante?
- tractability: analysis is complicated because the wage distribution affects decisions as a state variable

Directed search:

- makes sense in terms of economics
- OJS is likely to be directed (referral, etc.)
- robust wage dispersion and tenure effect

Why is directed search hopeful of producing a wage ladder?

- workers at different wages differ in reservation values
- they choose to search for different values:
 - high-wage workers search for higher values
 - climb up the wage ladder

2. Model Environment (in Continuous Time)

Workers:

- continuum with measure one;
rate of time preference: ρ ; death rate: δ
effective discount rate $r = \rho + \delta$
identical productivity: y ; unemployment benefit: b
- for contracts to be interesting, workers are assumed to be
 - risk averse: $u''(w) < 0$ (and $u'(0) = \infty$)
 - not able to borrow against future income
- employed worker can search on the job at rate $\lambda_1 > 0$;
unemployed worker can search at rate $\lambda_0 > 0$

Firms:

- risk neutral
- each firm hires one worker
- number of vacancies is determined by free entry;
flow cost of a vacancy = $k > 0$
- identical firms:
cost of production = 0; output = y

Wage-tenure contracts (offered at time s):

$$W(s) = \{\tilde{w}(t, s)\}_{t=0}^{\infty}$$

- tenure t : $t = \emptyset$ is “tenure” of unemployed worker
- value of a contract (discounted sum of utilities to a worker):
 $V(0, s) = x$: an offer at s ;
 $V(t, s)$: continuation value from time $(t + s)$ onward;
bounds: $V \in [\underline{V}, \bar{V}]$

$$\underline{V} = \frac{u(b)}{r}, \quad \bar{V} = \frac{u(\bar{w})}{r}$$

\bar{w} : highest wage, to be determined later

Assumptions on contracts:

- a worker can quit at any time
- a firm commits to the contract
- firms do not respond to employee's outside offers

Examples without the last assumption:

Harris and Holmstrom (82), Postel-Vinay and Robin (02)

Directed search:

- treat different offers x as different submarkets
- workers and firms choose which submarket to enter
- submarket x : $\#$ of vacancies $= N(x)$
 - tightness $\theta(x)$: applicants/firms ratio
 - Poisson rate of matches: $\mathcal{M}\left(N(x), \frac{N(x)}{\theta(x)}\right)$
 - matching rates for participants:
for a vacancy: $q(x) = \mathcal{M}(\theta(x), 1)$
 - for a worker: $p(x) = \mathcal{M}(\theta(x), 1) / \theta(x)$

Matching function:

$$q(x) = \mathcal{M}(\theta(x), 1), \quad p(x) = \frac{\mathcal{M}(\theta(x), 1)}{\theta(x)}$$

eliminate θ $p(x) = M(q(x))$

- refer to $M(\cdot)$ as the matching function, which is exogenous and implied by \mathcal{M}
- but $\theta(\cdot)$, $p(\cdot)$ and $q(\cdot)$ are all endogenous
- look for equilibrium with $p' < 0$ and $p'' < 0$.

- Assumptions on matching function M :
 - (i) continuous for all $q \in [\underline{q}, \bar{q}]$, with $\bar{q} < \infty$
 - (ii) $M'(q) < 0$, with $M(\bar{q}) = 0$ (i.e., $p(\bar{V}) = 0$)
 - (iii) twice differentiable, with bounded $|M'|$ and $|M''|$
 - (iv) $qM''(q) + 2M'(q) \leq 0$.

- An example: $\mathcal{M}(\theta, 1) = [\alpha\theta^\sigma + 1 - \alpha]^{1/\sigma}$

$$\implies p = \hat{M}(q) = \left[\frac{1 - (1 - \alpha)q^{-\sigma}}{\alpha} \right]^{-1/\sigma}$$

$\sigma = -1$: all assumptions are satisfied;

for $\sigma \geq 0$: set $\bar{q} < \infty$, and $M(q) = \hat{M}(q) - \hat{M}(\bar{q})$

for $\sigma < 0$ (and $\sigma \neq -1$): let

$$q_0 = (1 - \epsilon)(1 - \alpha)^{1/\sigma}, \quad \bar{q} = q_0 - \frac{\hat{M}(q_0)}{\hat{M}'(q_0)}$$

$$M(q) = \begin{cases} \hat{M}(q), & \text{if } q \leq q_0 \\ \hat{M}(q_0) + \hat{M}'(q_0)(q - q_0), & \text{if } q_0 < q \leq \bar{q} \end{cases}$$

3. Optimal Decision

Optimal decision: application

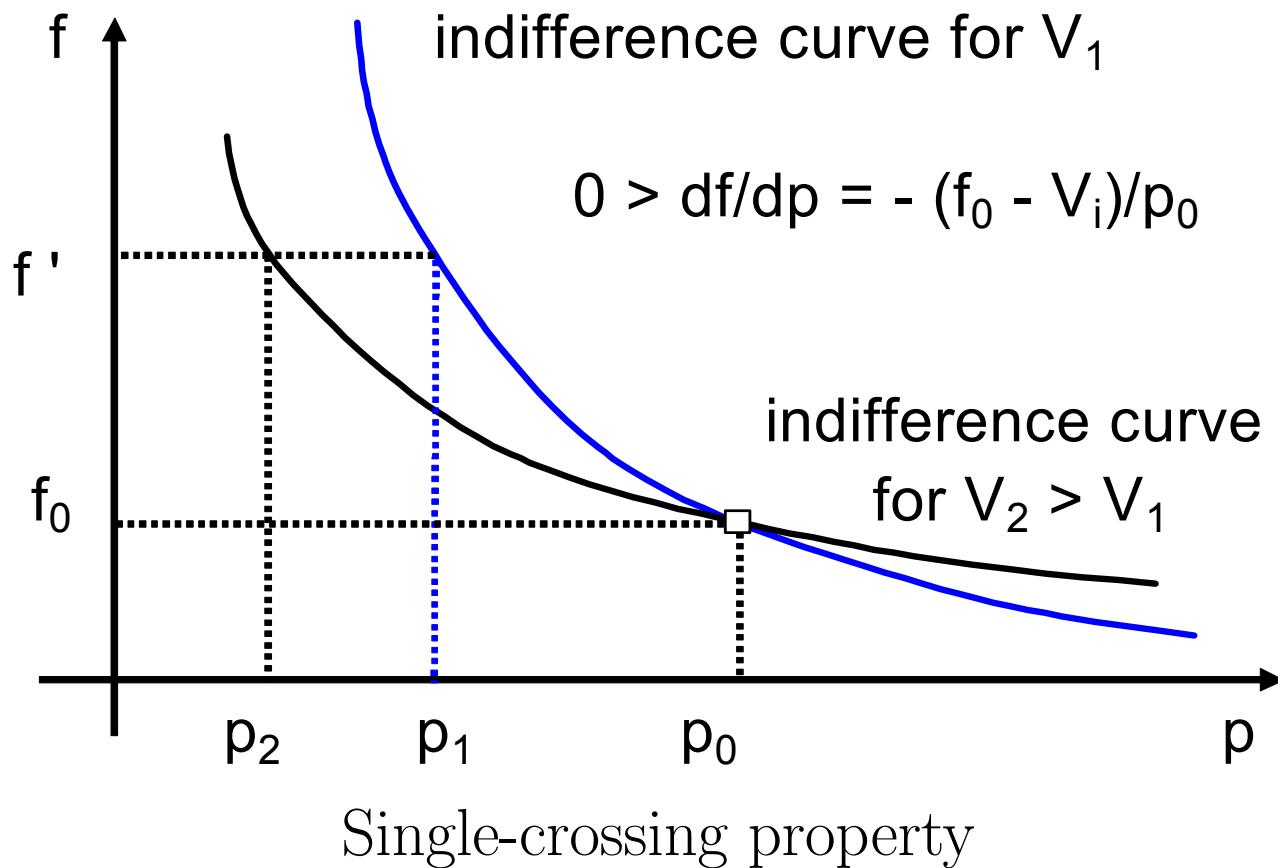
(This decision does not exist if search is undirected.)

- a worker whose current value is $V(t)$ solves:

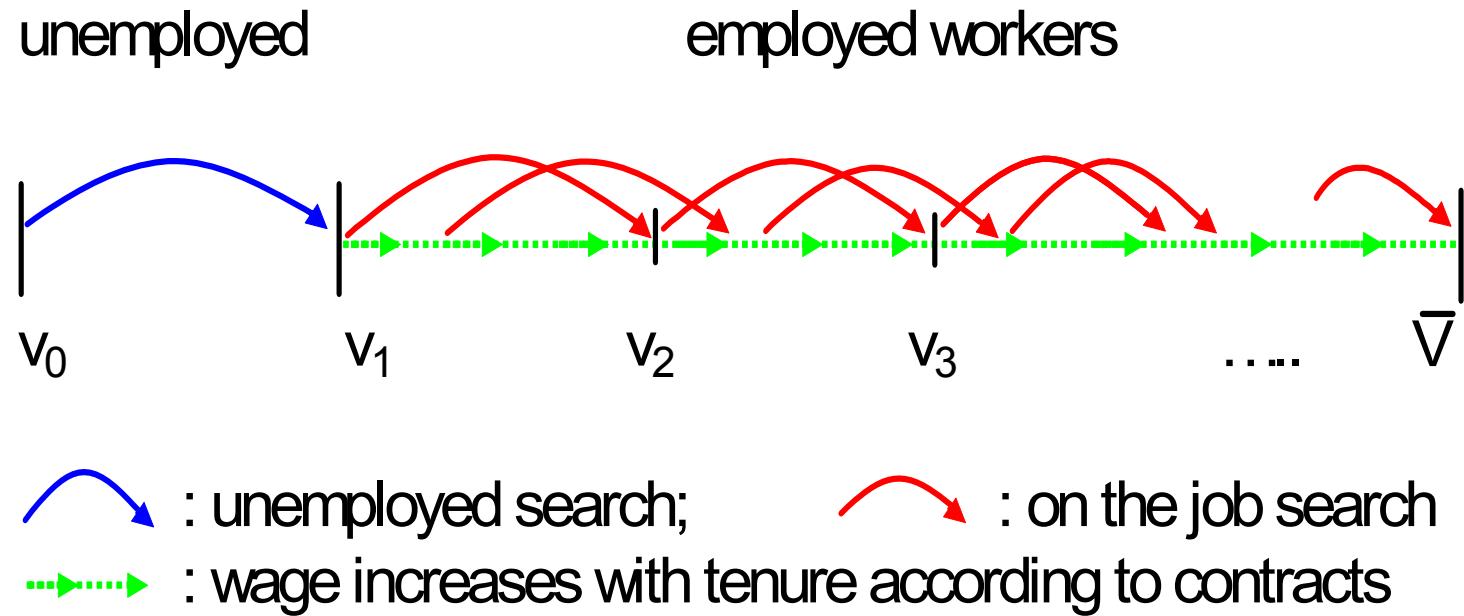
$$S(V(t)) \equiv \max_{x \in [V(t), \bar{V}]} p(x) [x - V(t)]$$

- tradeoff: probability $p(x)$ and gain $[x - V(t)]$
- optimal choice $F(V) \equiv \arg \max p(x) [x - V]$:
 - unique for each V (\implies endogenous separation)
 - increasing: $F'(V) > 0$ (ladder)
 - diminishing gains: $[F(V) - V]$ and $S(V)$ decrease in V

$$S(V(t)) \equiv \max p(f) [f - V(t)]$$



Implied career path of a worker:



$$v_0 = V_u, \quad v_j = F^{(j)}(v_0), \quad j = 1, 2, \dots$$

Value functions:

- employed worker with tenure t :

$$\begin{aligned} \rho V(t) &= u(\tilde{w}(t)) + \frac{dV(t)}{dt} + \lambda_1 S(V(t)) - \delta V(t) \\ \text{“permanent} &\quad \text{utility} + \text{gain from} & \quad \text{gain from} \\ \text{income”} &\quad \text{increase in tenure} & \quad \text{search} \\ \implies \frac{dV(t)}{dt} &= rV(t) - \lambda_1 S(V(t)) - u(\tilde{w}(t)), \quad (r = \rho + \delta) \end{aligned}$$

- unemployed worker (with $t = \emptyset$):

$$0 = rV_u - \lambda_0 S(V_u) - u(b)$$

(unemp. benefit does not change over duration)

Value functions (continued):

- firm that has a worker with tenure t :

$$\frac{d\tilde{J}(t)}{dt} = \left[r + \underbrace{\lambda_1 p(F(V(t)))}_{\text{worker's endogenous separation rate}} \right] \tilde{J}(t) - [y - \tilde{w}(t)]$$

- integrate:

$$\tilde{J}(t_a) = \int_{t_a}^{\infty} [y - \tilde{w}(t)] \gamma(t, t_a) dt$$

$$\text{where } \gamma(t, t_a) \equiv \exp \left[- \int_{t_a}^t [r + p(F(V(\tau)))] d\tau \right]$$

Recruiting decision at time s :

- two parts of the decision:
 - part 1: optimal offer $x = V(0)$ to maximize $q(x)\tilde{J}(0)$
 - part 2: contract to deliver $V(0)$ and maximize $\tilde{J}(0)$
- part 1: choose the offer $x = V(0)$
 - tradeoff between prob q and value \tilde{J}
 - eqm $q(\cdot)$ is such that a firm is indifferent among a continuum of offer values x such that $q(x)\tilde{J}(0) = k$
 - implied bounds on value and wage:

$$q(\bar{V})\underline{J} = k \implies \bar{w} = y - rk/\bar{q}, \quad \underline{J} = k/\bar{q}$$

- part 2: given $V(0)$, optimal contract $\{\tilde{w}(t)\}_{t \geq 0}$ solves

$$(\mathcal{P}) \quad \max \tilde{J}(0) = \int_0^\infty [y - \tilde{w}(t)] \gamma(t, 0) dt$$

subject to

$$\frac{dV(t)}{dt} = rV(t) - \lambda_1 S(V(t)) - u(\tilde{w}(t)), \quad V(0) = x$$

$$\frac{d}{dt} \gamma(t, 0) = -[r + p(F(V(t)))] \gamma(t, 0)$$

Solve this problem with the Hamiltonian:

$$\begin{aligned} \mathcal{H}(t) = & (y - \tilde{w}) \gamma(t, 0) + \Lambda_V [rV - S(V) - u(\tilde{w})] \\ & - \Lambda_\gamma [r + p(F(V))] \gamma(t, 0) \end{aligned}$$

Properties of optimal contracts:

- wage and value increase with tenure:

$$0 < \frac{d\tilde{w}}{dt} = \underbrace{-\frac{[u'(\tilde{w})]^2}{u''(\tilde{w})}}_{\begin{matrix} \text{risk} \\ \text{aversion} \end{matrix}} \times J(V) \times \underbrace{\lambda_1 \left[-\frac{d}{dV} p(F(V)) \right]}_{\begin{matrix} \text{backloading wages} \\ \text{to reduce quit} \end{matrix}}$$

two considerations:

- backloading wages to reduce incentive to quit
- risk aversion: making backloading smooth
(if workers are risk neutral, wage jumps are possible)

Properties of optimal contracts (continued):

- values for workers increase with tenure:

$$\dot{V}(t) > 0, \quad \text{all } t < \infty$$

if $V(t)$ has a decreasing segment, replacing it with a constant reduces quit rate and increases firm value

- efficient sharing of value between firm and worker:

$$-J(t) = \frac{\dot{V}(t)}{u'(\tilde{w}(t))}$$

a dollar value given up by a firm is gained by the worker

Properties of optimal contracts (continued):

- wages are positive ($\tilde{w}(t) > 0$ for all t) if

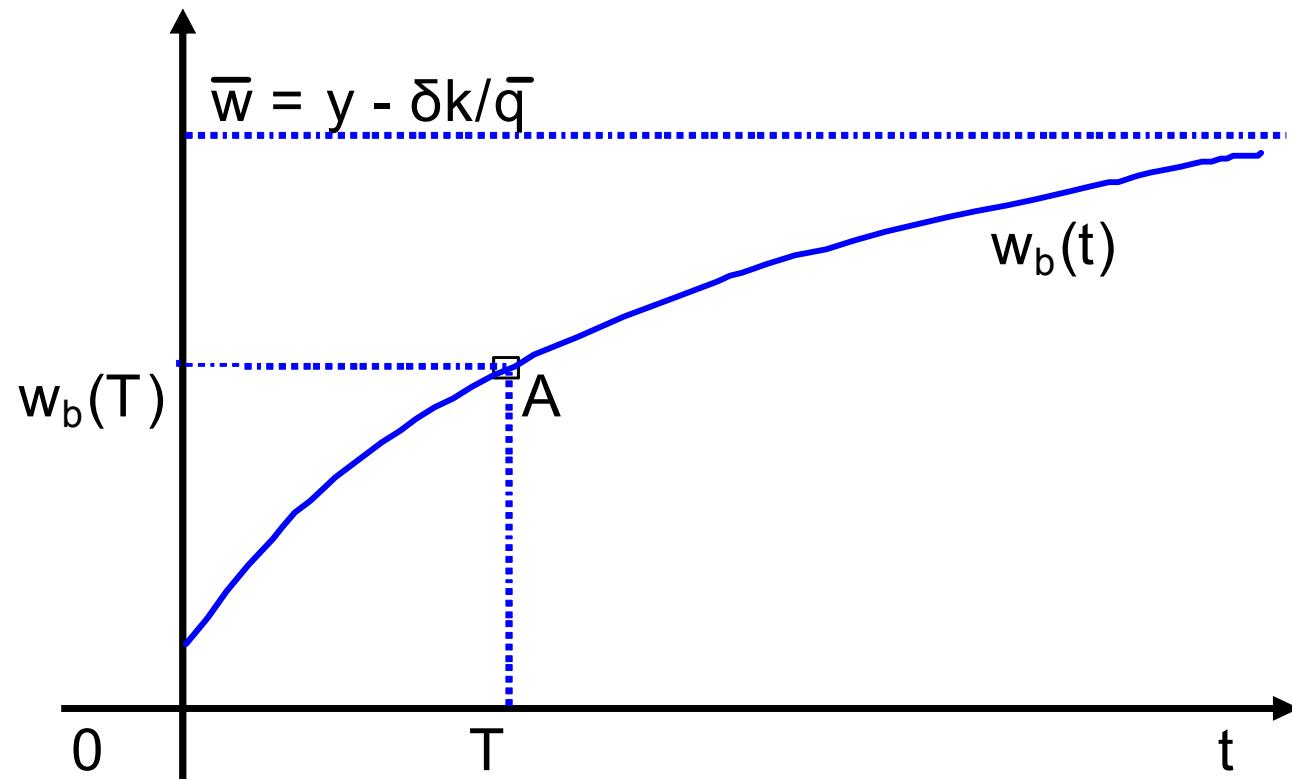
$$\lambda_1 - \lambda_0 \leq [u(b) - u(0)] / S(\underline{V})$$

in fact, $\tilde{w}(t) \geq b$ if $\lambda_1 \leq \lambda_0$:

- an unemployed worker can apply to all the offers that an employed worker can apply
- if $\tilde{w}(t) < b$, an employed worker is better off quitting into unemployment and search

- set of optimal contracts: segments of a “baseline contract”

Baseline contract



all contracts $\{\tilde{w}(t)\}_{t=0}^{\infty}$: $\tilde{w}(t) = \tilde{w}_b(t+s)$, some $s \geq 0$

Use the baseline contract to describe the equilibrium:

- set of equilibrium offers: $\mathcal{V} = \{V(t) : t \geq 0\}$
 $V(0)$: initial value of baseline contract
- $T(z)$: length of time taken to reach value z according to the baseline contract; i.e., $V(T(z)) = z$
- change notation from wage to value:

$$w(V) = \tilde{w}(T(V)) : \text{wage function}$$
$$J(V) = \tilde{J}(T(V)) : \text{firm value}$$

4. Equilibrium Definition:

A stationary equilibrium consists of two blocks:
block 1: $[\mathcal{V}, p(V), q(V), F(V), w(V), J(V)]$ that satisfy

- (i) optimal application: $F(V)$, given $p(\cdot)$
- (ii) optimal contracts and values:
each value $V \in \mathcal{V}$ is delivered by an optimal contract,
starting with wage $w(V)$ and generating firm value $J(V)$
- (iii) $p(\cdot)$ and $q(\cdot)$ satisfy: $p(V) = M(q(V))$ and
$$q(V)J(V) = k \quad \text{for all } V \in [\underline{V}, \bar{V}] \quad (\text{free entry})$$
$$< k \quad \text{for all } V \notin [\underline{V}, \bar{V}]$$

block 2: distribution of workers, G , that satisfies

- (iv) G is stationary

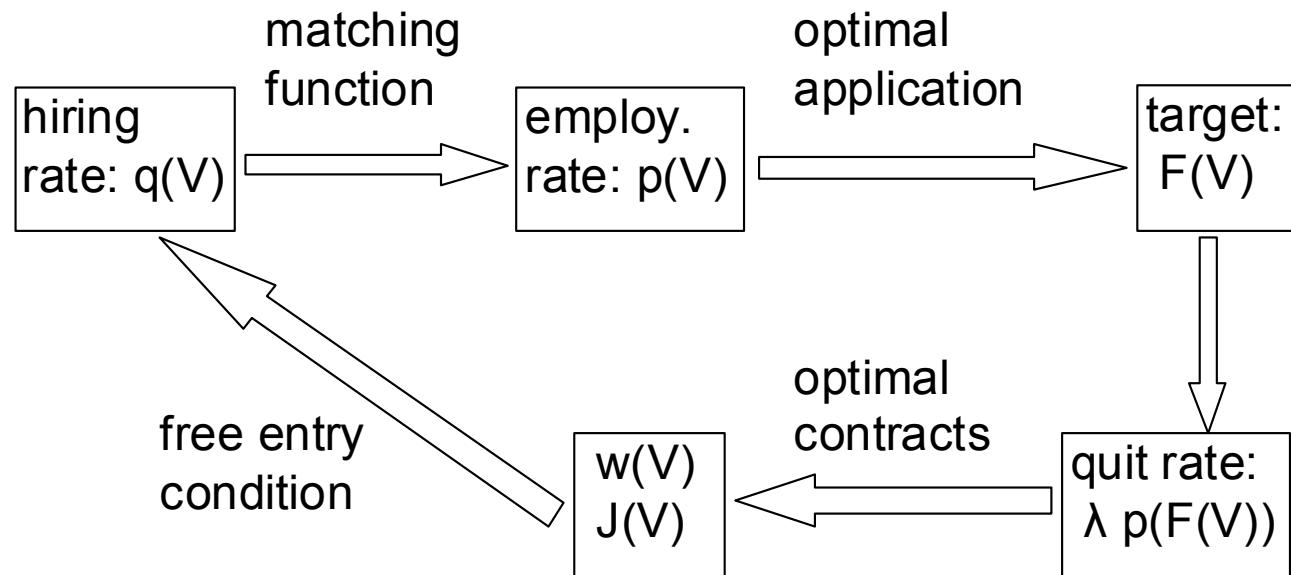
Block recursivity (BR):

- block 1 is independent of block 2:
 - we can solve eqm values, contracts and matching prob functions WITHOUT any reference to the distribution
 - this reduces the state space significantly \implies tractability
- then we compute distribution by counting worker flows (distribution is still important for the aggregates).

Directed search and free entry are important for BR:

- directed search \implies endogenous separation:
workers at different values optimally choose to
search for different future values
- applicants care only about the submarket they search:
 - not about how many workers search in other submarkets
 - if matching rate functions do not depend on G , then
contracts, values and search decision do not depend on G
- free entry of vacancies \implies
matching rate functions are indeed independent of G

Why is the equilibrium block recursive?



Fixed-point problem

Why does block recursivity fail with undirected search?

- case in which wage-tenure contracts are posted (BC 03):
 - worker who receives a firm's offer is randomly drawn;
 \implies acceptance prob depends on where the worker is in G
 - current worker's quit prob depends on offer distribution
 \implies firm value and contracts depend on the distribution
- case in which wage-tenure contracts are bargained:
 - worker's outside option in bargaining is a random draw from the distribution \implies contracts depend on distribution

Contrasts between the two search frameworks

Directed search:	Undirected search:
(i) optimal application: given $p(\cdot)$, chooses $F(V)$;	(i) random application: $\lambda_1 [1 - O(V)]$; O : offer distribution
(ii) hiring rate: $q(V) = M^{-1}(p(V))$;	(ii) hiring rate: $q(V) \equiv \lambda_1 n G(V) + \lambda_0 (1 - n)$
(iii) free entry of firms: determine $p(\cdot)$;	(iii) free entry of firms: relate O and G ;
(iv) stationarity: PDE of G	(iv) stationarity: PDE of G

5. Equilibrium

Develop a mapping ψ : $w(V) \rightsquigarrow \psi w(V)$

- (a) start with a wage function $w(\cdot)$
- (b) efficient sharing of values $[J'(V) = -1/u'(w)] \implies$

$$J_w(V) = k/\bar{q} + \int_V^{\bar{V}} \frac{1}{u'(w(z))} dz$$

- (c) zero expected profit of recruiting:

$$q_w(V) = \frac{k}{J_w(V)}, \quad p_w(V) = M \left(\frac{k}{J_w(V)} \right)$$

Develop a mapping ψ (continued):

- (d) optimal application $\implies F_w(V)$ and $S_w(V)$

- (e) Bellman equations for (J, V) and $\dot{J} = -\dot{V}/u'(w) \implies$

$$\begin{aligned}\psi_w(V) \\ = y - [r + \lambda_1 p_w(F_w(V))] J_w(V) \\ - \frac{1}{u'(w(V))} \max\{0, rV - \lambda_1 S_w(V) - u(w(V))\}\end{aligned}$$

Determine the fixed point of ψ :

- assumption:
 - employment is worthwhile: $(0 <) b < \bar{w} = y - rk/\bar{q}$
 - lower bound on b to ensure: $\psi w(\underline{V}) \geq \underline{w}$
 - for all $w \in [\underline{w}, \bar{w}]$,

$$1 + \frac{u''(w)}{[u'(w)]^2} [u(\bar{w}) - u(w)] \geq 0$$

Determine the fixed point of ψ (continued):

- look for $w(V)$ in the following sets:

$$\Omega = \{w : w(V) \in [\underline{w}, \bar{w}] \text{ for all } V; \\ w(\bar{V}) = \bar{w}; \\ w \text{ is continuous and (weakly) increasing}\}$$

Ω is closed and convex.

- for the equilibrium, we need $w(\cdot)$ to lie in

$$\Omega' = \{w \in \Omega : w(V) \text{ is } \underline{\text{strictly increasing}} \text{ for all } V < \bar{V}\}$$

Theorem (Existence):

ψ has a fixed point $w^* \in \Omega'$.

Proof (Schauder's fixed point theorem):

- Ω : nonempty, closed, bounded, and convex;
- $\psi : \Omega \rightarrow \Omega'$;
- ψ is continuous in sup norm;
- $\{\psi^j w\}_{j=0}^{\infty}$ is equi-continuous.

Properties of equilibrium (recap):

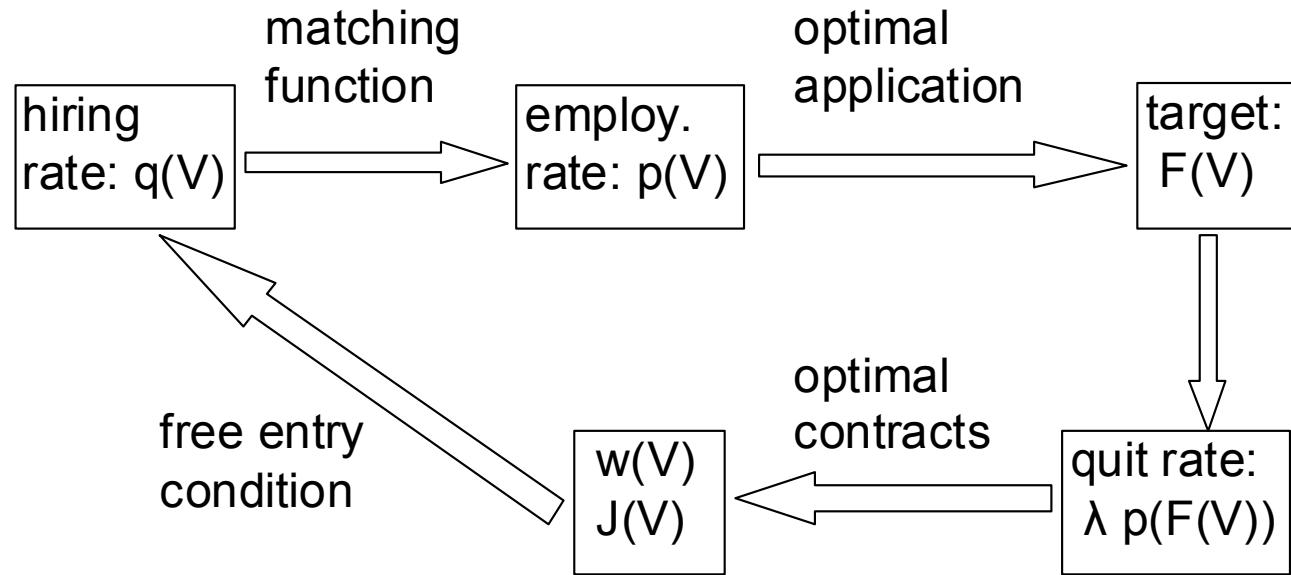
- wage-tenure relationship: $w'(V) > 0$
- wage-quit relationship: $\frac{d}{dV} [p(F(V))] < 0$
- $p(V)$: strictly decreasing and strictly concave
 $\implies F(V)$ is unique, and $F'(V) > 0$
(endogenous separation among applicants
and endogenously limited mobility)

6. Comparative Statics

An increase in unemp. benefits, minimum wage or λ_0

- has **NO effect** on individual decisions such as
 - employed workers' optimal applications
 - equilibrium contracts
 - job-to-job transitions conditional on current wages
- it affects aggregate flows: through v_1 and distribution

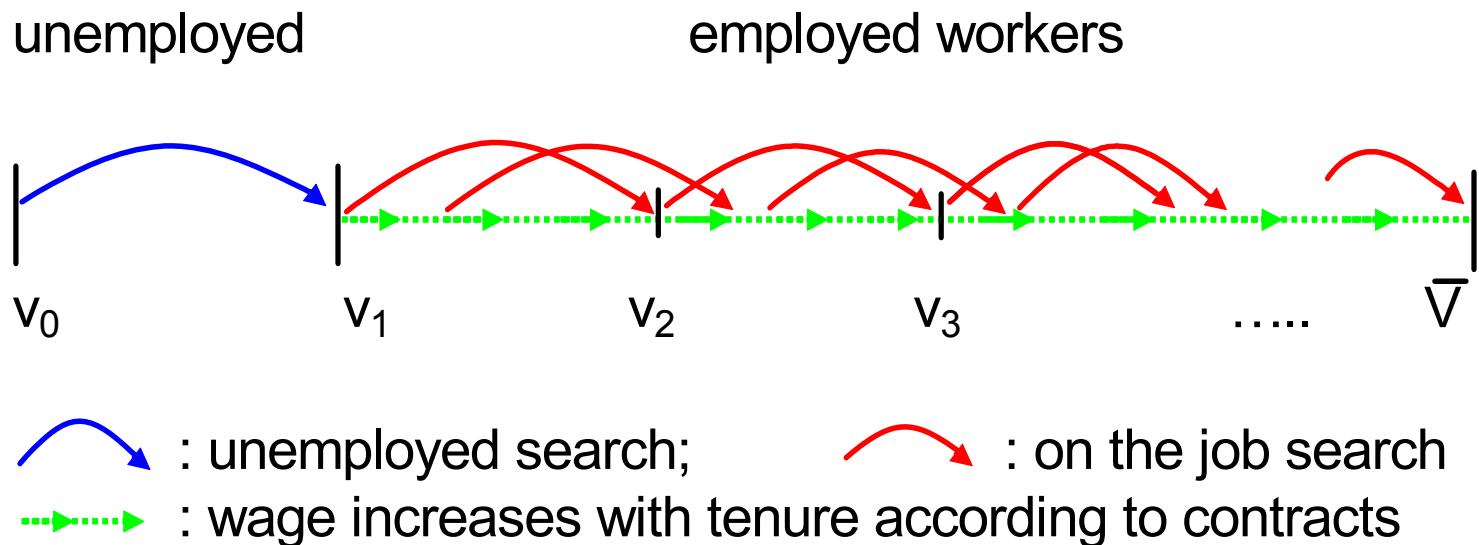
Why is there such independence?



Fixed-point problem

7. Nondegenerate Distribution of Workers:

(despite homogeneity and directed search)



$$v_0 = V_u, \quad v_j = F^{(j)}(v_0), \quad j = 1, 2, \dots$$

- CDF, $G(V)$, is continuous for all V :
(consider any small time interval dt)
 - all existing workers at V move out:
quit, or V increases over tenure
 - but inflow is proportional to dt
 - if there is a mass point at V , then
outflow \gg inflow: a contradiction
- density g is continuously differentiable except at $v_2 = F(v_1)$

Theorem:

Equilibrium density function of employed workers is given by:

$$\frac{1}{\delta} g_1(V) \dot{V} = \Gamma(V, v_1) \equiv \exp \left[- \int_{T(v_1)}^{T(V)} [\delta + p(F(V(t)))] dt \right]$$

$$g_j(V) \dot{V} - g_j(v_j) \dot{v}_j \Gamma(V, v_j)$$

$$= \lambda_1 \int_{v_j}^V \Gamma(V, z) p(z) g_{j-1}(F^{-1}(z)) dF^{-1}(z), \quad j = 2, 3, \dots$$

Moreover, $g_j(v_j) = \lim_{V \rightarrow v_j} g_{j-1}(V)$ for all j .

Density of employed workers:

- $\mathbf{g}(\mathbf{v}_1) = \mathbf{0}$ and $g'(v_1) > 0$
- if $F'(\bar{V}) > 0$, then $\mathbf{g}(\bar{\mathbf{V}}) = \mathbf{0}$:
so the density is decreasing for V close to \bar{V}
- density of wages is decreasing for w close to \bar{w}

Explain why $g(\bar{V}) = 0$:

(consider V such that $F(V) < \bar{V}$)

To support $F(V)$ as optimal application:

- $p(V') < p(F(V))$ for all $V' > F(V)$
- in particular, $p(\bar{V}) = 0$
- few firms recruit at values close to \bar{V}
- few workers are employed at these values.

What if search is undirected?

- an offer **does not** affect applications
 \implies tight connection between distribution and matching
- $\lambda_1 n G(V) + \lambda_0 (1 - n) = q(V) = \frac{k}{J(V)}$
- decreasing and concave $J(V)$
 $\implies g(V)$ is increasing (counterfactual!)

A computed example:

- utility function: $u(w) = \frac{w^{1-\eta}-1}{1-\eta}$

- urn-ball matching function:

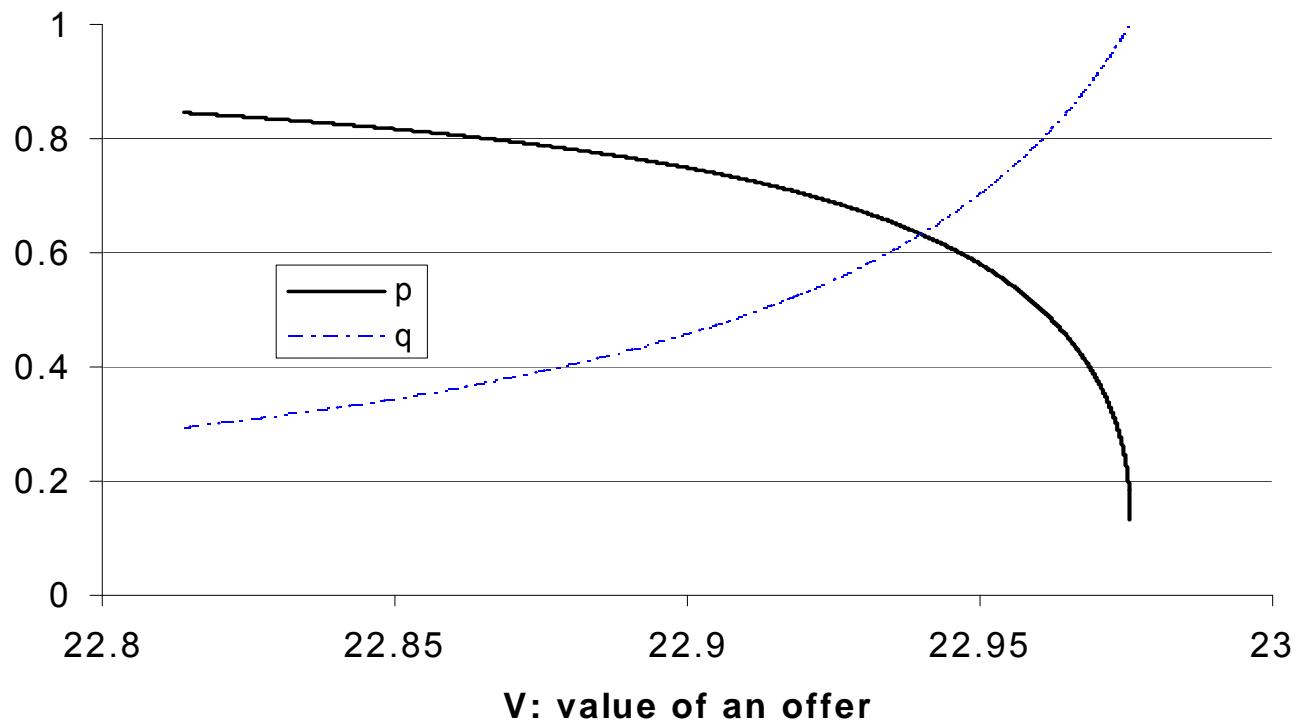
$$\mathcal{M}(\theta, 1) = \bar{q} \left(1 - e^{-\theta} \right) \implies M(q) = -\frac{q}{\ln(1 - q/\bar{q})}$$

- parameter values:

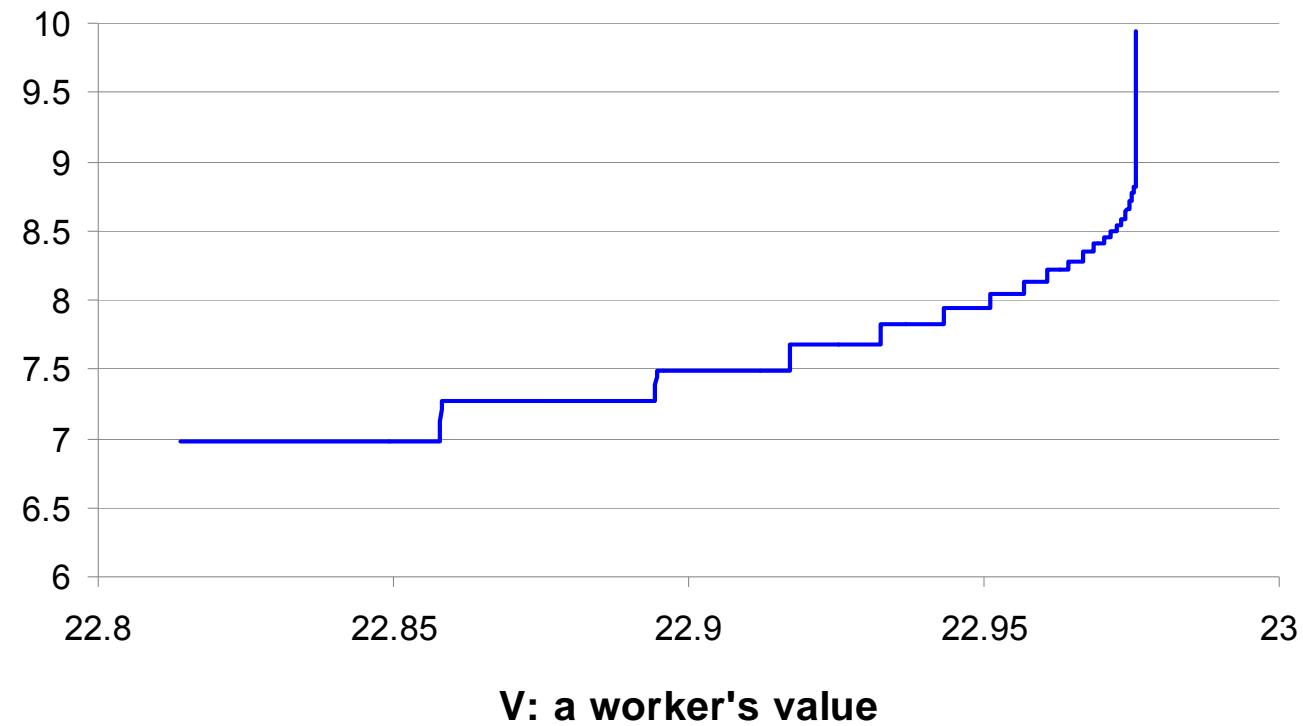
$$\eta = 1, \quad \bar{q} = 1, \quad y = 10, \quad k = 0.5$$

$$\delta = 0.1, \quad \rho = 0, \quad b = 2, \quad \lambda_0 = 1 = \lambda_1$$

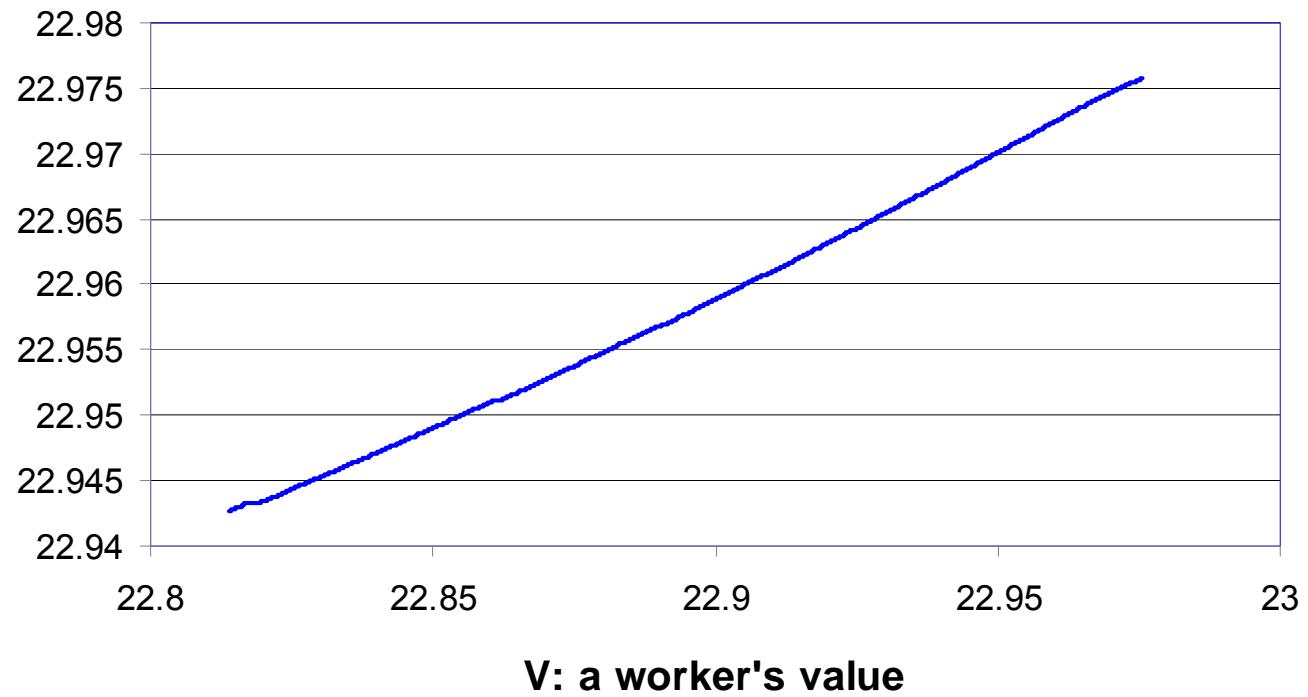
p: employment rate; q: hiring rate



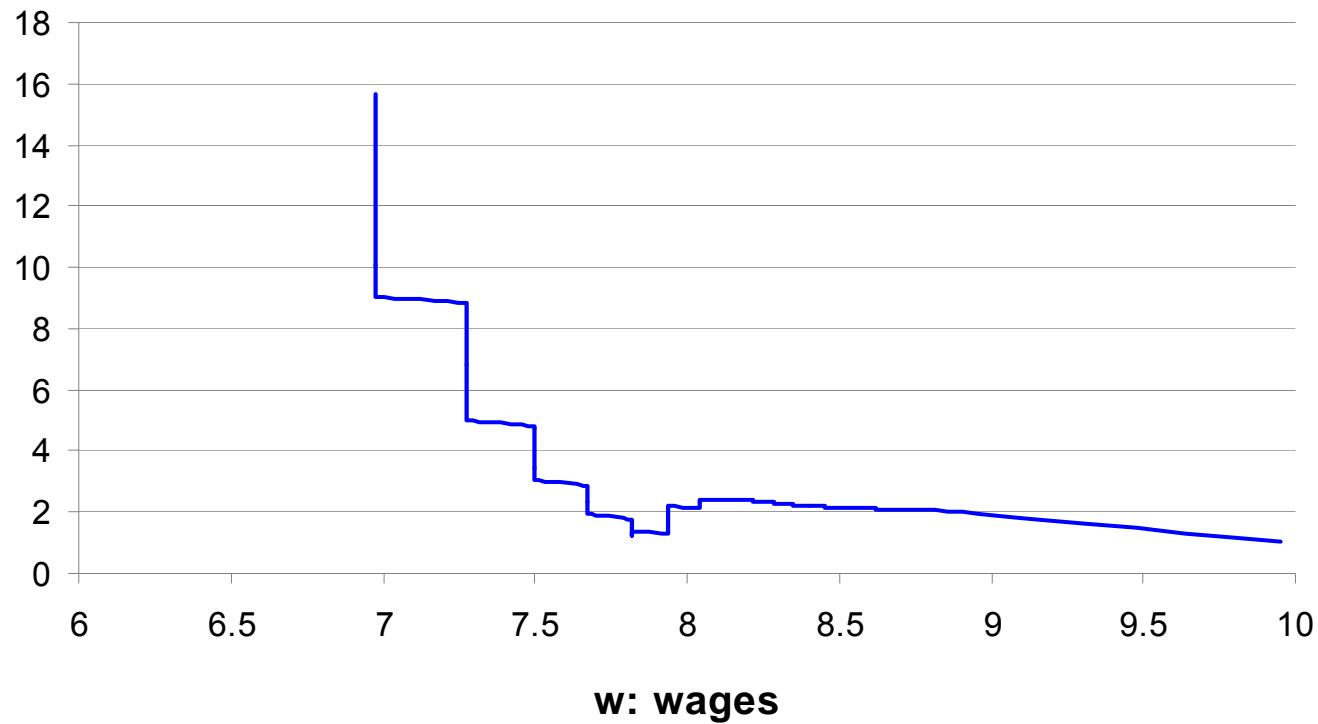
$w(V)$: wage function



$F(V)$: target of optimal application



gw: density of wages



Gw: cumulative distribution of wages

8. Conclusion

- Directed OJS for wage contracts preserves:
wage-tenure, wage-quit relationships
- New features:
 - block recursivity and tractability:
individual decisions, contracts and matching rate functions
are all independent of the distribution of workers
 - endogenously limited wage mobility and robust residual
wage dispersion: exist even if all workers see all offers
 - wage density can be decreasing
 - new comparative statics results regarding policy